
Unsupervied Domain Adaptation for Semantic Segmentation

Arshad Kazi Bhuyashi Deka
University of Wisconsin-Madison

Sadman Sakib

1. Abstract

In read-world scenario, it might be required to apply a deep
learning model on a different distribution of data. Re-
training a model to adapt to a different distribution, tech-
nically referred as domain adaptation, can be expensive.
We propose to adapt a model on unseen distributions in
unsupervised manner during test time. We follow the
classical Adaptive Batch Normalization method and pro-
pose an improvement on that method to utilize the train-
ing data in-hand during test time. We have chosen to test
our method on semantic image segmentation problem. We
have tested our method on Cityscape images and adapted
the model for images taken in adversarial conditions such
as fog. With Adaptive Batch Normalization and optimiza-
tion, we get an improvement of 11.7% in average DICE
score on foggy Cityscapes dataset. The code is available
at this link - https://github.com/sadmankiba/
Image_Segmentation_Pipeline

2. Introduction

In recent years, deep learning models have achieved signifi-
cant advancements, particularly in tasks involving complex
data distributions. These models are adept at learning pat-
terns from the training distribution, but they often struggle
when faced with out-of-distribution (OOD) data. For exam-
ple, a model trained on clear weather cityscape images may
perform well under similar conditions but fails to generalize
to images captured in foggy or other adverse weather con-
ditions. A straightforward solution to this problem would
involve collecting new data from the OOD distribution and
retraining the model in a supervised manner. However, this
approach is both time-consuming and requires extensive an-
notation efforts, making it impractical for real-world appli-
cations where new OOD scenarios can frequently emerge.

Covariate shift is the issue where the input distribution to
a model changes. As the model parameters are less effective
in this distribution, normalization is performed to keep the
input distribution static. Similarly during mini-batch train-
ing, the input to a layer might change across batches that
can slow down its training. This problem is referred as In-

ternal covariate shift and batch normalization was proposed
to handle this problem [1]. The mean and variance of a
batch normalization layer are approximated during training
time and they are frozen during test time to produce deter-
ministic output. However, these statistics may not be suit-
able for OOD data. So, we follow AdaBN [2] to calculate
these statistics at test time. Even keeping all other layers
frozen and updating only the batch normalization layers has
proven effective to adapt to OOD data.

3. Related Works
Test-time adaptation techniques to tackle distribution shift
includes two main approaches- 1) re-estimating normaliza-
tion statistics from current test input, and 2) optimizing
model parameters in unsupervised manner. Prediction-time
batch normalization [4] recomputes the batch normalization
layer statistics for each mini-batch in test-time. However,
this requires the batch size to be sufficiently large to provide
a good estimation of test data distribution. Test-time nor-
malization [3] interpolates between training and test time
statistics by learning the optimal mixture parameter during
training with augmented data.

4. Method
Mean and variance at a batch normalization layer is calcu-
lated for each batch and the input is normalized. Since it
can restricts all layers to same distribution, a scale and a
shift parameter are learned.

µB ←
1

m

m∑
i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑
i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B + ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

1

https://github.com/sadmankiba/Image_Segmentation_Pipeline
https://github.com/sadmankiba/Image_Segmentation_Pipeline


To keep test time model performance deterministic,
frozen mean and variance from training data are used in test
time. This is approximated over training by applying expo-
nential moving average (EMA) on the statistics calculated
from each minibatch.

In AdaBN, the mean and variance are calculated over the
whole test domain. To make this efficient, we perform this
step by using EMA on the statistics from mini-batches in
test data. During adaptation, we keep the all layers except
batch normalization layers frozen.

However, calculating the statistics only on test data com-
pletely forgets the statistics from training data. The statis-
tics from training data can help achieve better generaliza-
tion. So, we propose an optimization to AdaBN to mix
training data with a ratio α, where α is a hyperparameter.
The combination of training and test data is shuffled. So,
mini-batches can contain samples from both training and
test data.

5. Experimental Setup

We implemented two baseline models trained on Cityscape
data and Cityscape data with augmentation. The augemen-
tations include flip, rotate, color and gamma distortions.
The baseline models are used to compare against the Ad-
aBN model. We have reduced the number of classes from
34 to 20 by combining labels of similar classes to get a good
performance on the small dataset.

Baseline Models Training: The segmenta-
tion models have a U-net architecture loaded from
segmentation models pytorch library with
ResNet-50 model as encoder. We used batch size 6,
learning rate 0.0001 and Adam optimizer. We used
cross-entropy loss for classification and DICE loss for
segmentation and added the two losses with equal weights.
The training has been done on finely annotated Cityscape
dataset with 3500 train, 500 validation and 1000 test
images.

Test Time Domain Adaptation: During test-time do-
main adaptation, the model’s layers are frozen, excluding
the batch normalization layers. The running statistics (mean
and variance) of these layers are dynamically updated us-
ing the test-time data. To mitigate the risk of the model
fully overfitting to the test domain, a mixing hyperparame-
ter, α, is introduced to compute a weighted average between
the test and training data distributions during the adaptation
process.

6. Results

6.1. Baseline Results

Table 1 shows the DICE scores on the validation dataset
and foggy dataset. The scores are obtained with the models

Normal fog(0.005) fog(0.01) fog(0.02)
w/o aug 0.7 0.68 0.64 0.55
w/ aug 0.72 0.7 0.67 0.62

Table 1. Average DICE score of 20 classes (including background)
for the best-trained models

trained on Cityscapes dataset with and without augmenta-
tion. The foggy dataset has 3 levels of fog which increases
from 0.005 to 0.02. As expected, the DICE score is higher
for model with augmentation and decreases as the level of
fog increases.

Figure 1. (top) An image from Cityscapes dataset and its foggy
version (middle) Semantic segmentation identified for the two im-
ages by our model (trained with augmentation) (bottom) ground
truth for semantic segmantation of both images

Figure 1 shows the semantic segmentation produced by
the model for an image and its foggy version. In the figure,
we can see that some objects in the foggy image are mis-
classified or partially detected. For example, the trees in the
background for the foggy image are not segmented by the
model. It is likely being classified as part of the buildings
due to its unclear boundary.

0 10 20 30 40 50
Step 

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Lo
ss

Train
Val

(a) Without augmentation

0 10 20 30 40 50 60 70
Step 

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Lo
ss

Train
Val

(b) With augmentation

Figure 2. Loss curve of the model trained with and without aug-
mentation

Figure 2 shows the loss curves of training and validation

2



dataset when the model is trained with and without aug-
mentation. As expected, the validation loss is slightly lower
when the model is trained with data augmentation.

6.2. Domain Adaptation Results

We experimented test domain adaptation of with various
values of alpha and found that alpha with 0.2 gives the best
results on test data for both the models, trained with aug-
mentations and without augmentations. Table 2 shows the
average DICE score with different amount of training data
mix.

Train:Test No mix α = 0.2 α = 0.5 α = 1
w/o aug 0.645 0.645 0.639 0.631
w/ aug 0.689 0.693 0.691 0.682

Table 2. Average DICE score of 20 classes (including background)
on foggy Cityscapes dataset with different training data mix.

Figure 3 shows the comparison between baseline model
outputs vs adapted models with alpha value of 0.2. It is
clearly visible that adapted model is able to segment the
image with better accuracy.

Figure 3. (top) An image from Cityscapes dataset and its foggy
version (middle) Semantic segmentation identified for the foggy
image by baseline model with augmentation before and after Ad-
aBN (bottom) ground truth for semantic segmantation of both im-
ages

7. Conclusion and Future Work
The proposed test-time domain adaptation technique offers
a substantial performance boost in scenarios characterized
by domain shift. The method’s advantage lies in its ability
to operate without requiring additional training steps, mak-
ing it a highly efficient and adaptable solution for real-world
applications.

While this study has demonstrated the potential to im-
prove performance in image segmentation, several avenues
for future research remain unexplored. A more comprehen-
sive investigation into the relationship between batch size
and the mixing parameter α and their impact on perfor-
mance could be undertaken. Additionally, the performance
of this technique on other types of datasets, such as medical
images or satellite imagery, can be evaluated to check the
generalisability of this technique. Finally, exploring its ap-
plication to tasks like object detection and instance segmen-
tation presents an intriguing direction for future work.

References
[1] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-

celerating deep network training by reducing internal covari-
ate shift, 2015. 1

[2] Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Ji-
aying Liu. Adaptive batch normalization for practical domain
adaptation. Pattern Recognition, 80:109–117, 2018. 1

[3] Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha
Choi. Ttn: A domain-shift aware batch normalization in test-
time adaptation, 2023. 1

[4] Zachary Nado, Shreyas Padhy, D. Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek. Eval-
uating prediction-time batch normalization for robustness un-
der covariate shift, 2021. 1

3


	. Abstract
	. Introduction
	. Related Works
	. Method
	. Experimental Setup
	. Results
	. Baseline Results
	. Domain Adaptation Results

	. Conclusion and Future Work

